Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature Dependence of Annealed and Nonannealed HEMT Ohmic Contacts Between 5 and 350 K

Identifieur interne : 000383 ( Main/Repository ); précédent : 000382; suivant : 000384

Temperature Dependence of Annealed and Nonannealed HEMT Ohmic Contacts Between 5 and 350 K

Auteurs : RBID : Pascal:13-0089474

Descripteurs français

English descriptors

Abstract

HEMT performance critically depends on contact resistance, particularly in cryogenic applications, where the semiconductor resistance contributions are reduced, thanks to lower optical phonon scattering rates. The literature offers little about the temperature dependence of contact resistances in HEMTs. We report a temperature-dependent comparison of the annealed and nonannealed ohmic contacts for low-noise InP HEMTs. Contact resistances of annealed Ge/Au/Ni/Au and nonannealed Ti/Pt/Au ohmic contacts were characterized as a function of temperature between 5 and 350 K. Side-by-side comparison exposes the differences of nonannealed versus annealed structures with respect to the contact and sheet resistance. Whereas both contact types show equivalent performances at cryogenic temperatures for recessed cap structures reminiscent of practical HEMTs, our annealed contacts display a significant increase in contact resistance with increasing temperature, in marked contrast to the near temperature independence found in our nonannealed contacts. The finding is of importance since the source resistance directly enters the transistor minimum noise figure Fmin in field-effect transistors. Additional contributions to the parasitic sheet resistance of ohmic, overlay, and electroplated interconnect metals are also characterized as a function of temperature.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0089474

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Temperature Dependence of Annealed and Nonannealed HEMT Ohmic Contacts Between 5 and 350 K</title>
<author>
<name sortKey="Alt, Andreas R" uniqKey="Alt A">Andreas R. Alt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Millimeter-Wave Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8092 Zurich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bolognesi, C R" uniqKey="Bolognesi C">C. R. Bolognesi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Millimeter-Wave Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8092 Zurich</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0089474</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0089474 INIST</idno>
<idno type="RBID">Pascal:13-0089474</idno>
<idno type="wicri:Area/Main/Corpus">001256</idno>
<idno type="wicri:Area/Main/Repository">000383</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-9383</idno>
<title level="j" type="abbreviated">IEEE trans. electron devices</title>
<title level="j" type="main">I.E.E.E. transactions on electron devices</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Binary compound</term>
<term>Comparative study</term>
<term>Contact resistance</term>
<term>Cryogenic temperature</term>
<term>Cryogenics</term>
<term>Field effect transistor</term>
<term>Germanium</term>
<term>High electron mobility transistor</term>
<term>Indium phosphide</term>
<term>Integrated circuit</term>
<term>Interconnection</term>
<term>Low noise circuit</term>
<term>Noise figure</term>
<term>Ohmic contact</term>
<term>Optical phonon</term>
<term>Optical scattering</term>
<term>Parasitic resistance</term>
<term>Performance evaluation</term>
<term>Phonon scattering</term>
<term>Semiconductor materials</term>
<term>Sheet resistivity</term>
<term>Temperature dependence</term>
<term>Temperature effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépendance température</term>
<term>Recuit</term>
<term>Transistor mobilité électron élevée</term>
<term>Contact ohmique</term>
<term>Evaluation performance</term>
<term>Résistance contact</term>
<term>Cryogénie</term>
<term>Température cryogénique</term>
<term>Phonon optique</term>
<term>Diffusion optique</term>
<term>Diffusion phonon</term>
<term>Effet température</term>
<term>Etude comparative</term>
<term>Circuit faible bruit</term>
<term>Résistivité couche</term>
<term>Figure bruit</term>
<term>Transistor effet champ</term>
<term>Résistance parasite</term>
<term>Interconnexion</term>
<term>Semiconducteur</term>
<term>Phosphure d'indium</term>
<term>Composé binaire</term>
<term>Germanium</term>
<term>Circuit intégré</term>
<term>InP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">HEMT performance critically depends on contact resistance, particularly in cryogenic applications, where the semiconductor resistance contributions are reduced, thanks to lower optical phonon scattering rates. The literature offers little about the temperature dependence of contact resistances in HEMTs. We report a temperature-dependent comparison of the annealed and nonannealed ohmic contacts for low-noise InP HEMTs. Contact resistances of annealed Ge/Au/Ni/Au and nonannealed Ti/Pt/Au ohmic contacts were characterized as a function of temperature between 5 and 350 K. Side-by-side comparison exposes the differences of nonannealed versus annealed structures with respect to the contact and sheet resistance. Whereas both contact types show equivalent performances at cryogenic temperatures for recessed cap structures reminiscent of practical HEMTs, our annealed contacts display a significant increase in contact resistance with increasing temperature, in marked contrast to the near temperature independence found in our nonannealed contacts. The finding is of importance since the source resistance directly enters the transistor minimum noise figure F
<sub>min</sub>
in field-effect transistors. Additional contributions to the parasitic sheet resistance of ohmic, overlay, and electroplated interconnect metals are also characterized as a function of temperature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9383</s0>
</fA01>
<fA02 i1="01">
<s0>IETDAI</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. electron devices</s0>
</fA03>
<fA05>
<s2>60</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Temperature Dependence of Annealed and Nonannealed HEMT Ohmic Contacts Between 5 and 350 K</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ALT (Andreas R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOLOGNESI (C. R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory for Millimeter-Wave Electronics, Swiss Federal Institute of Technology Zürich</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>787-792</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222F3</s2>
<s5>354000506287430360</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0089474</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>I.E.E.E. transactions on electron devices</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>HEMT performance critically depends on contact resistance, particularly in cryogenic applications, where the semiconductor resistance contributions are reduced, thanks to lower optical phonon scattering rates. The literature offers little about the temperature dependence of contact resistances in HEMTs. We report a temperature-dependent comparison of the annealed and nonannealed ohmic contacts for low-noise InP HEMTs. Contact resistances of annealed Ge/Au/Ni/Au and nonannealed Ti/Pt/Au ohmic contacts were characterized as a function of temperature between 5 and 350 K. Side-by-side comparison exposes the differences of nonannealed versus annealed structures with respect to the contact and sheet resistance. Whereas both contact types show equivalent performances at cryogenic temperatures for recessed cap structures reminiscent of practical HEMTs, our annealed contacts display a significant increase in contact resistance with increasing temperature, in marked contrast to the near temperature independence found in our nonannealed contacts. The finding is of importance since the source resistance directly enters the transistor minimum noise figure F
<sub>min</sub>
in field-effect transistors. Additional contributions to the parasitic sheet resistance of ohmic, overlay, and electroplated interconnect metals are also characterized as a function of temperature.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F01</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F06A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Transistor mobilité électron élevée</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>High electron mobility transistor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Transistor movibilidad elevada electrones</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Contact ohmique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ohmic contact</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Contacto óhmico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Résistance contact</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Contact resistance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Resistencia contacto</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cryogénie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Cryogenics</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Criogenia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Température cryogénique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Cryogenic temperature</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Temperatura criogénica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Phonon optique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Optical phonon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Fonón óptico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Diffusion optique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Optical scattering</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Difusión óptica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Diffusion phonon</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Phonon scattering</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Difusión fonón</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Effet température</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Temperature effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Efecto temperatura</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Circuit faible bruit</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Low noise circuit</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Circuito débil ruido</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Résistivité couche</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Sheet resistivity</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Resistividad capa</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Figure bruit</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Noise figure</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Figura ruido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Transistor effet champ</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Field effect transistor</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Transistor efecto campo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Résistance parasite</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Parasitic resistance</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Resistencia parásita</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Interconnexion</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Interconnection</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Interconexión</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Germanio</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Circuit intégré</s0>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Integrated circuit</s0>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Circuito integrado</s0>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>20</s5>
</fC07>
<fN21>
<s1>063</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000383 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000383 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0089474
   |texte=   Temperature Dependence of Annealed and Nonannealed HEMT Ohmic Contacts Between 5 and 350 K
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024